
� Explore Gist Blog Help

configuration
John Bohn edited this page on Oct 16, 2013 · 8 revisions

Whitelist generation process should be iterative.

The first step is usually to generate a bit of legitimate traffic, to raise all the obvious

exceptions, then generate a first set of whitelists. Once you put these whitelists in

production, the concerned exceptions will not be raised/logged anymore.

Once this is done, learning can continue from your usual traffic. You should then again

generate whitelist from this traffic, and repeat until you are satisfied and/or the only

exceptions raised are not false positives.

It is a good idea, for the initial learning, to setup naxsi as a reverse proxy to the existing

website, and generate legitimate traffic with your browser on it (http://127.0.0.1), and/or

edit your /etc/hosts to make your site point to 127.0.0.1. It will allow to test naxsi on the

real site, while generating a first set of whitelists.

Whitelists are created from logs. This can be done either manually, or using an

automated tool like nxutil. This page will only cover nxutil usage. To write rules by

yourself, and for overall understanding of naxsi rules & configuration, please see the

rulessyntax whitelists and naxsilogs pages.

itpp16 + � � �

75 507 77nbs-system / naxsi�

A quick note on whitelist generation

Generating whitelists from logs

configuration · nbs-system/naxsi Wiki https://github.com/nbs-system/naxsi/wiki/configuration

1 of 4 2/17/2015 11:15 AM

Clone this wiki locally

When the site is simple, manually creating the whitelist is a good solution. nxutil remains

a simple tool, and you should not rely solely on it.

I am the only one generating traffic for a website, and did just a very quick navigation. We

can generate whitelists from log files, with -o option :

 $ nx_util.py -l /tmp/*.log -o

 05/30/2013 09:22:16 Deleting old database :naxsi_sig

 05/30/2013 09:22:16 List of files :['/tmp/access_main.log', '/tmp/error.log', '/tmp/error_main.log', '/

 ########### Optimized Rules Suggestion ##################

 # total_count:2 (16.67%), peer_count:1 (100.0%) | parenthesis, probable sql/xss

 BasicRule wl:1011 "mz:$URL:/|$HEADERS_VAR:cookie";

 # total_count:2 (16.67%), peer_count:1 (100.0%) | parenthesis, probable sql/xss

 BasicRule wl:1010 "mz:$URL:/|$HEADERS_VAR:cookie";

 # total_count:2 (16.67%), peer_count:1 (100.0%) | mysql keyword (|)

 BasicRule wl:1005 "mz:$URL:/|$HEADERS_VAR:cookie";

 # total_count:1 (8.33%), peer_count:1 (100.0%) | parenthesis, probable sql/xss

 BasicRule wl:1011 "mz:$URL:/wp-content/uploads/nbs-system-new-logo.png|$HEADERS_VAR:cookie";

 # total_count:1 (8.33%), peer_count:1 (100.0%) | parenthesis, probable sql/xss

 BasicRule wl:1010 "mz:$URL:/wp-content/uploads/nbs-system-new-logo.png|$HEADERS_VAR:cookie";

 # total_count:1 (8.33%), peer_count:1 (100.0%) | mysql keyword (|)

 BasicRule wl:1005 "mz:$URL:/wp-content/uploads/nbs-system-new-logo.png|$HEADERS_VAR:cookie";

 # total_count:1 (8.33%), peer_count:1 (100.0%) | parenthesis, probable sql/xss

 BasicRule wl:1011 "mz:$URL:/wp-content/themes/nautica/images/nbs-header-cerberhost.png|$HEADERS_VAR:coo

 # total_count:1 (8.33%), peer_count:1 (100.0%) | parenthesis, probable sql/xss

 BasicRule wl:1010 "mz:$URL:/wp-content/themes/nautica/images/nbs-header-cerberhost.png|$HEADERS_VAR:coo

 # total_count:1 (8.33%), peer_count:1 (100.0%) | mysql keyword (|)

 BasicRule wl:1005 "mz:$URL:/wp-content/themes/nautica/images/nbs-header-cerberhost.png|$HEADERS_VAR:coo

You can see that so far, all the exceptions are located in the cookies

($HEADERS_VAR:cookie), on various pages. nxutil will usually try to factorize rules, but

here is not enough traffic to do so.

With -p option, we can force the number of pages to be hit before a rule is factorized :

configuration · nbs-system/naxsi Wiki https://github.com/nbs-system/naxsi/wiki/configuration

2 of 4 2/17/2015 11:15 AM

 nx_util.py -l /tmp/*.log -o -p 1

 05/30/2013 11:03:06 Deleting old database :naxsi_sig

 05/30/2013 11:03:06 List of files :['/tmp/access_main.log', '/tmp/error.log', '/tmp/error_main.log', '/

 ########### Optimized Rules Suggestion ##################

 # total_count:4 (33.33%), peer_count:1 (100.0%) | parenthesis, probable sql/xss

 BasicRule wl:1011 "mz:$HEADERS_VAR:cookie";

 # total_count:4 (33.33%), peer_count:1 (100.0%) | parenthesis, probable sql/xss

 BasicRule wl:1010 "mz:$HEADERS_VAR:cookie";

 # total_count:4 (33.33%), peer_count:1 (100.0%) | mysql keyword (|)

 BasicRule wl:1005 "mz:$HEADERS_VAR:cookie";

As the match was always in the cookies, and cookies are transmitted at every request, it's

safe to assume that we can whitelist those exceptions on the whole site.

Those three rules can be even be written like this :

 BasicRule wl:1011 "mz:$HEADERS_VAR:cookie";

If you enabled naxsi extensive log naxsilogs#naxsi_exlog, you will have more detailed

output, including sample data that triggered the exception :

 # total_count:18 (33.33%), peer_count:1 (100.0%) | parenthesis, probable sql/xss

 #example (from exlog) : 'csrftoken=...; __utma=96...; __utmb=969...; __utmc=96992031;

 __utmz=96992031.1369940344.3.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none)'

 BasicRule wl:1011 "mz:$HEADERS_VAR:cookie";

The percentages that appear in the comments above the exception correspond to :

The ratio of this exception among all the exceptions triggered

The ratio of the number of peers that triggered this exception among all peers

Those two indicators are of great help to differentiate false positives from real attacks.

configuration · nbs-system/naxsi Wiki https://github.com/nbs-system/naxsi/wiki/configuration

3 of 4 2/17/2015 11:15 AM

Usually, an exception with a very low percentage indicates a real exception.

On the other hand, if your website doesn't drive much traffic and is publicly exposed, the

learning might be biased by the fact that, even if the sea is full of fishes, the ratio of

malevolent bots versus legitimate users is so low that hack attempts would be classified

as false positives.

One can as well filter events used to generate whitelists :

 nx_util.py -f "country = FR" -l /var/log/nginx/nginx-blog.memze.ro_error.log -o

This will imports and generate whitelists only from events coming from French IPS.

(Requires python-geoip)

Once generated, you can directly include them in your location, and reload nginx.

If you repeat the same navigation scenario, you will not see exceptions appear anymore.

Naxsi whitelist (along with naxsi configuration), is always location specific. As well, naxsi

will not handle internal requests.

Applying whitelists

Status API Training Shop Blog About© 2015 GitHub, Inc. Terms Privacy Security Contact �

configuration · nbs-system/naxsi Wiki https://github.com/nbs-system/naxsi/wiki/configuration

4 of 4 2/17/2015 11:15 AM

