

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 1 of 30

Not all webservers perform as equal

This document describes all functions which are unique or different from the
Linux version, general tips and examples.

Revision: 12 June 2016 (1.8)

Homepage: http://nginx-win.ecsds.eu/

Many more examples can be found in the prove*.zip and ngxLuaDB*.zip archives on site,
see the tconf/ or ngxLuDB/conf folder.

Content

1. PREFACE: [NGINX FOR WINDOWS ROADMAP] .. 3

2. ADDITIONAL CUSTOM 503 ERROR HANDLER VIA 513 .. 4

3. MICRO CACHING .. 5

4. APACHE MIGRATION TIPS ... 7

5. SPEED UP IMAGE ACCESS WITH A VARY HEADER ... 9

6. DENY ACCESS TO FOLDER(S) (.HTACCESS CONVERSION) .. 10

7. SSL BEST PRACTICES (DD. 7-3-2015) .. 10

8. APACHE STYLE LOGGING ... 10

9. REDIRECT ALL EXCEPT ROOT (FOR HTTP TO HTTPS REDIRECTION) 11

10. AUTHENTICATION VIA OTHER METHODS ... 11

http://nginx-win.ecsds.eu/
https://twitter.com/nginx4Windows

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 2 of 30

11. ELASTIC BACKEND LOAD BALANCER & IWCP ... 12

12. PHP CACHING ... 16

13. ERROR LOGGING ... 17

14. VIRTUAL HOST TRAFFIC STATUS, MONITORING FOR YOUR NOC 18

15. UPSTREAM TIMED OUT (10060…..) .. 20

16. ACCESSING REMOTE RESOURCES .. 21

17. PCRE IS NOW JIT ENABLED .. 21

18. STICKY: ENABLES SESSION AFFINITY (MODULE) ... 22

19. $REALIP_REMOTE_ADDR $REALIP_REMOTE_PORT ... 25

20. REWRITE BASED ON USER LANGUAGE SETTING ... 25

21. VIDEO STREAMING WITH RTMP AND VOD ... 25

22. CLOSED SOURCE VERSUS OPEN SOURCE ... 26

23. STREAM {} SERVER_NAME ? .. 26

24. MULTIPLE CACHE FILES FOR THE SAME KEY ... 27

25. RESTFUL INTERFACES AND HEADERS... 27

26. CIS, DHS, OWASP ... 27

27. SENDFILE ON OR OFF ? .. 28

28. DYNAMIC TLS (OPTIMIZING TLS OVER TCP) .. 28

- APPENDIXES - ... 29

A. F.A.Q. .. 29

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 3 of 30

1. Preface: [nginx for Windows roadmap]

March 19, 2015, we have made the decision to split away from the original nginx
code base.

This has been coming for a while, original nginx code which is absolutely not compatible
(or better described, not suitable for) with Windows, we’ve been re-engineering a number
of changesets to deal with this and maintain the original code, today (19-3) we have
decided to stop re-engineering and have laid out our own roadmap. What exactly this is
going to mean for functions and features between nginx Linux and our nginx for Windows
is jet unknown.

Of course we will do our best to incorporate new features but we are also aware that this
might not always be possible. This also affects new features in the add-ons we use.

The roadmap we have setup will focus on;

 Adding more security measures against any possible way of attack
 Our to-do list
 Getting every possible problem documented and solved (we’re doing this already)
 More non-blocking out of the box interfaces, for example Java and BI with

NetWeaver for SAP and Oracle, NetAPP, TSM

See also: http://nginx-win.ecsds.eu/anythingispossible.html

nginx 1.9.x

During re-factoring nginx for Windows we've switched code base which makes it easier for
us to import original nginx code without Windows issues by using a new native linux <>
windows low level API which natively deals with spinlock, mutex locking, Windows event
driven technology and full thread separation.

nginx 1.9 is the first such release, for the time being the current 1.7 release will be kept up
to date with critical patches and fixes only, no new functions will be added or imported.
LTS versions are not affected.

Currently (June 2016) we use 99% of the original codebase/features, amended/adjusted
and corrected to suite our requirements.

nginx is a registered trademark of Nginx Inc.
Windows® is a registered trademark of Microsoft Corporation.
NGINX for Windows multi core and event driven re-engineered technology is copyright by ECSystems.nl
All other license types, copyrights and trademarks can be found in their respective documents in our documentation
download folder.

http://nginx-win.ecsds.eu/anythingispossible.html

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 4 of 30

2. Additional custom 503 error handler via 513

Issue: a "return 503" can only be used once in a location block, when a custom 503 is
used for example with limit_req_zone you can't have a second custom 503 for a
maintenance page.

Added in 9-3-2014 nginx 1.5.12.1 Cheshire

Example:

 server {
 listen 80;
 server_name www.any.nl;
 root '/webroot/www.any.nl';
 error_page 503 @floodnotice;
 error_page 513 @maintenance;
 location / {
 if (-f $document_root/maintenance_mode.html) { return 513; }
 # Or with pure Lua, no IF issues
 ## rewrite_by_lua '
 ## local s = 0; local v = 0;
 ## local source_fname = ngx.var.document_root .. "/maintenance_mode.html";
 ## local file = io.open(source_fname);
 ## if file then v=1; file:close(); end;
 ## if string.find(ngx.var.remote_addr, "^10.10.30.") then v=0; end;
 ## if v>0 then return ngx.exit(513); end;
 ## ';
 try_files $uri $uri/ =404;
 index index.html index.htm;
 limit_req zone=floodh burst=32 nodelay;
 # generates a 503 when triggered
 # see limit_req_zone directive how limit_req works
 }
 location @floodnotice {
 root html
 rewrite ^ /floodnotice.html break;
 }
 location @maintenance {
 rewrite ^ /maintenance_mode.html break;
 # process a 513 but return a 503 to client !
 }
 }

The normal behavior would be (if the file exists) to return the contents of
"/maintenance_mode.html" with a "HTTP/1.1 200 OK", or when the 503 error_page is used
a 503, however a 503 is often used for other things.

With this new 513 error_page the same thing can be done but the 513 is replaced with a
503 when the headers are compiled which allows you to use the real 503 for other things.

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 5 of 30

3. Micro caching

Speed up dynamic access for many concurrent users with a micro cache.

Get ‘ramdisk_setup v3.4.6.exe’ on site, install a small ramdrive (128-256mb) no-
compression / NTFS, assign a drive letter like W: to it, add (in advanced) caching as path
to create at boot.

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 6 of 30

Example:

http {
……………..

fastcgi_cache_path w:/caching/fastcgi_cache levels=1:2 keys_zone=microcache:10m max_size=1024m inactive=4h;
fastcgi_temp_path w:/caching/fastcgi_temp;

 server {
………………

 location ~ \.php$ {
 try_files $uri $uri/ =404;
………………
 fastcgi_ignore_client_abort on;
 fastcgi_pass myLoadBalancer;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 include fastcgi_params;
 #Caching microcache parameters
 fastcgi_cache microcache;
 fastcgi_cache_key $scheme$host$request_uri$request_method;
 fastcgi_cache_valid 200 301 302 304 5s;
 fastcgi_cache_use_stale updating error timeout invalid_header http_500;
 fastcgi_pass_header Set-Cookie;
 fastcgi_pass_header Cookie;
 fastcgi_ignore_headers Cache-Control Expires Set-Cookie;
 #Auto Purge the cache
 fastcgi_cache_purge PURGE from 127.0.0.1;
 #Caching microcache parameters
 }
 }
}

How does it work? Quite simple, the reply of each request to a backend is stored as a file
on disk (*), if such an identical request is received within the cache-valid period (5
seconds) the cache file is returned instead of asking the backend to basically return the
same answer again.

This also works for proxy_pass, just change fastcgi* to proxy_pass*

(*) Nb. make sure your anti-virus software is excluded from scanning your disk cache
location(s).

Nb2. Inactive should always be larger than any valid value and at least 4 hours.

Nb3. Always make sure ….cache_path and ….temp_path are two different paths on the
same drive !

Nb4. “ignore long locked inactive cache entry”: Make sure talking to a backend always takes
less time than expected cache entry lifetime.

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 7 of 30

4. Apache migration tips

Note: a redirect is for the client, it is a common misconception a redirect is a server item.

Pitfall-1: redirect loops, always double check where you are redirecting to is not where you
are coming from.

Pitfall-2: always use a 302 unless you are absolutely 1000% sure the redirect won't
change, a 301 (permanent), once a 301 is used it is near enough impossible to change it
(again).

Apache:

VirtualHost 127.0.0.100:812
ServerName www.mydomain.eu
Redirect / http://www.mynewdomain.eu/new-path/new-destination
/VirtualHost

nginx:

server {
 listen 812;
 server_name www.mydomain.eu;
 return 302 http://www.mynewdomain.eu/new-path/new-destination;
}

Apache:

VirtualHost 127.0.0.100:966
ServerName myotherdomain.eu
ProxyRequests On
ProxyPass / http://192.168.1.33:80/path/
ProxyPassReverse / http://192.168.1.33:80/path/
/VirtualHost

nginx;

server {
 listen 996;
 server_name myotherdomain.eu;
 location / {
 [1] proxy_pass http://192.168.1.33:80/path/;
 [3] include c:/nginx/conf/proxy.conf;
 [3] keepalive_requests 500;
 [3] proxy_http_version 1.1;
 [3] proxy_ignore_client_abort on;
 [2] rewrite /path/([^/]+) /$1 break;
 }
}

[1] It might be that url http://myotherdomain.eu:996/bla becomes: http://myotherdomain.eu:996/path/bla
experiment with the ending / (remove or add) in proxy_pass [1] to see how the url is passed on,
use the [2] rewrite line to strip portions of the passed url if needed.
[3] keepalive/httpversion/ignoreclient: are values a backend might need or not.

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 8 of 30

Apache:

VirtualHost 127.0.0.1:123
ServerName www.mydomain.eu
ProxyRequests On
ProxyPass / http://192.168.1.2:830/
ProxyPassReverse / http://192.168.1.2:830/
ProxyPass /path http://192.168.1.222:80/
ProxyPassReverse /path http://192.168.1.222:80/
/VirtualHost

nginx:

server {
 listen 123;
 server_name www.mydomain.eu;
 location / {
 proxy_pass http://192.168.1.2:830;
 include c:/nginx/conf/proxy.conf;
 keepalive_requests 500;
 proxy_http_version 1.1;
 proxy_ignore_client_abort on;
 }
 location /path {
 proxy_pass http://192.168.1.222:80/path;
 include c:/nginx/conf/proxy.conf;
 keepalive_requests 500;
 proxy_http_version 1.1;
 proxy_ignore_client_abort on;
 }
}

keepalive/httpversion/ignoreclient: are values a backend might need or not.

Nb. proxy_pass is not working, parts of the website is not showing and I see 404, 500 error
entries in the log ?

Change:
 proxy_pass http://192.168.1.222:80/path/;

In to:
 proxy_pass http://192.168.1.222:80/path;

(note the trailing slash has been removed)

Other resources on migrating from Apache to NGINX:
https://www.digitalocean.com/community/tutorials/how-to-migrate-from-an-apache-web-
server-to-nginx-on-an-ubuntu-vps
http://blog.donnywals.com/how-i-migrated-from-apache-to-nginx/

https://www.digitalocean.com/community/tutorials/how-to-migrate-from-an-apache-web-server-to-nginx-on-an-ubuntu-vps
https://www.digitalocean.com/community/tutorials/how-to-migrate-from-an-apache-web-server-to-nginx-on-an-ubuntu-vps
http://blog.donnywals.com/how-i-migrated-from-apache-to-nginx/

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 9 of 30

5. Speed up image access with a Vary header

 server {
 listen 80;
 server_name www.mydomain.eu;
 root '/webroot/www.mydomain.eu’;
 # Caching Static Files
 location ~* \.(jpg|jpeg|png|gif|ico|css|js)$ {
 expires 14d;
 add_header Vary Accept-Encoding;
 }
 location / {
 try_files $uri $uri/ =404;
 index index.html index.htm;
 }
 }

Very simple but very effective.

When images are missing make sure ‘root’ is set to where your images are, pay attention
especially with fast_cgi and proxy_pass root locations.

Check you logfiles for 404 entries to see where images supposed to be.

Remember root=local file access, it is not uncommon to use;
root //192.168.3.4/path/to/files
What is in root+location should be the UNC link to a resource.

A direct location for this is also possible like:

 location /applicationname/\.(jpg|jpeg|png|gif|ico|css|js)$ {
 proxy_pass http://192.168.140.30:8080;
 expires 14d;
 add_header Vary Accept-Encoding;

 ………………………………….

The resource (your images) should then live in http://192.168.140.30:8080/applicationname

See also item 24 about the side effects of using Vary and caching.

file://192.168.3.4/path/to/files
http://192.168.140.30:8080/
http://192.168.140.30:8080/applicationname

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 10 of 30

6. Deny access to folder(s) (.htaccess conversion)

 server {
 listen 80;
 server_name www.mydomain.eu;
 root '/webroot/www.mydomain.eu’;
 ………………………………….
 location /cache/ { deny all; }
 location /files/ { deny all; }
 location /store/ { deny all; }
 location /uploads/ { deny all; }
 location /sessions/ { deny all; }
 ………………………………….

nginx does not support the .htaccess file method, to deny access you have to use above
examples.

7. SSL best practices (dd. 7-3-2015)

ssl_prefer_server_ciphers On;
ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
ssl_ciphers
ECDH+AESGCM:ECDH+AES256:ECDH+AES128:ECDH+3DES:RSA+AESGCM:RSA+AES:RSA+3DES:!a
NULL:!eNULL:!MD5:!DSS:!EXP:!ADH:!LOW:!MEDIUM;

8. Apache style logging

log_format main '[$time_local] $remote_addr $remote_port - $remote_user $scheme "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for" $upstream_cache_status';

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 11 of 30

9. Redirect all except root (for http to https redirection)

http {
 map $request_uri $requri {
 default 1;
 / 0;
 }
……………………
 server {
 listen 80;
 server_name www.mydomain.eu;
 root '/webroot/www.mydomain.eu’;
 if ($requri) { return 301 https://www.mydomain.eu$request_uri; }
 location / {
 try_files $uri $uri/ =404;
 index index.html index.htm;
 }
 }

This will allow you to keep root access via plain HTTP but redirect everything else to
HTTPS.

10. Authentication via other methods

location /authentication {
 auth_request /check/auth.php;
 proxy_pass http://127.0.0.1:8080;
}

Your auth.php could then check Active Directory, or whatever system, to check if the
user is allowed anything.

See also http://nginx.org/en/docs/http/ngx_http_auth_request_module.html

“The ngx_http_auth_request_module module (1.5.4+) implements client authorization based on the
result of a subrequest. If the subrequest returns a 2xx response code, the access is allowed. If it
returns 401 or 403, the access is denied with the corresponding error code. Any other response
code returned by the subrequest is considered an error.

For the 401 error, the client also receives the “WWW-Authenticate” header from the subrequest
response.”

NB.:
Everything seems to work fine for GET requests but for POST requests I get 499 and 500 errors

proxy_set_header Content-Length "";

It should be possible to do this in Lua and co-sockets which allows you to authenticate
thousands of users simultaneously and cache their sessions and rights.

http://nginx.org/en/docs/http/ngx_http_auth_request_module.html

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 12 of 30

11. Elastic Backend Load Balancer & IWCP

>>> Elastic Backend Load Balancer & Inter Worker Communication Protocol <<<

A new feature enabling you to manage your upstreams, using IWCP to propagate
upstream changes to all workers.

Added in 17-1-2015 nginx 1.7.10.1 Gryphon

A simple configuration like:

 upstream myLoadBalancer {
 server 192.168.169.22:80 weight=1 fail_timeout=5;
 server 192.168.169.17:80 weight=1 fail_timeout=5;
 server 192.168.169.26:80 weight=1 fail_timeout=5;
 server 192.168.169.23:80 weight=1 fail_timeout=5;
 server 192.168.169.27:80 weight=1 fail_timeout=5 down;
 server 192.168.169.28:80 weight=1 fail_timeout=5 down;
 least_conn;
 }
 upstream myLoadBalancerDDOS {
 server 127.0.0.1:8081 weight=1 fail_timeout=5;
 server 127.0.0.1:8082 weight=1 fail_timeout=5;
 server 127.0.0.1:8083 weight=1 fail_timeout=5 down;
 server 127.0.0.1:8084 weight=1 fail_timeout=5 down;
 server 127.0.0.1:8085 weight=1 fail_timeout=5 down;
 server 192.168.169.254:80 weight=1 fail_timeout=5 down;
 least_conn;
 }

In myLoadBalancer you have set 2 extra backends ready for expanding capacity.

In myLoadBalancerDDOS you have set 2 backends (or internal redirects to 503 location
blocks) to deal with attacks, a backend (…169.254:80) to serve as a blackhole and 3 more
for expanding capacity.

Of course you can set as many backends and their destinations as you like, other
webservers, faster blackholes, offloading addresses, swap between cloud providers, etc…

The whole point of EBLB is to allow you to add/remove and change resources with the
click of a mouse or fully automated with a tool like curl or even wget. You can’t expand an
existing pool yet so configure as much as you can and use the GUI / curl to manage them.

Use curl from monitoring devices or other trigger generating tools.
See conf/EBLB/upstream_EBLB_with_IWCP.txt for curl scripting examples.

nginx has a few internal monitoring values you could use in order to trigger a change in
resources.

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 13 of 30

Through the GUI of EBLB (http://127.0.0.1/upstreamstatus) this example will look like:

When you change a backend with the mouse or script via curl you’re going to see IWCP in
action in your logfiles:

2015/03/06 16:55:50 [error] 3268#4084: [lua] iworkcomproto.lua:48: message for worker: 3268,

key: IWCP_MSG_PU_14256573465869, msg: #2248#!myLoadBalancerDDOS,2,1,
context: ngx.timer

2015/03/06 16:55:50 [error] 3268#4084: [lua] iworkcomproto.lua:66: result: true, for worker: 3268,
err: nil, key: IWCP_MSG_PU_14256573465869, context: ngx.timer

2015/03/06 16:55:51 [error] 2940#2116: [lua] iworkcomproto.lua:48: message for worker: 2940,
key: IWCP_MSG_PU_14256573465869, msg: #3268#2248#!myLoadBalancerDDOS,2,1,
context: ngx.timer

2015/03/06 16:55:51 [error] 2940#2116: [lua] iworkcomproto.lua:66: result: true, for worker: 2940,
err: nil, key: IWCP_MSG_PU_14256573465869, context: ngx.timer

2015/03/06 16:55:51 [error] 2632#2552: [lua] iworkcomproto.lua:48: message for worker: 2632,
key: IWCP_MSG_PU_14256573465869, msg: #2940#3268#2248#!myLoadBalancerDDOS,2,1,
context: ngx.timer

2015/03/06 16:55:51 [error] 2632#2552: [lua] iworkcomproto.lua:66: result: true, for worker: 2632,
err: nil, key: IWCP_MSG_PU_14256573465869, context: ngx.timer

We have 4 workers so you see 3 messages initiated by one worker, all processed in less
than 1 second.

Nb. messages are written to the error log because there is no ‘normal’ way to write to the access log.

http://127.0.0.1/upstreamstatus

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 14 of 30

The GUI returns with:

And we have added a backend to the myLoadBalancerDDOS stream in real-time
immediately ready for use for all workers via IWCP.

Let’s do something dramatic with myLoadBalancer …

Within seconds we have redirected the main stream to 127.0.0.1:8084 which is a local
location block returning a 503.

 server {
 listen 8084;
 server_name localhost;
 location / { return 503; }
 }

No configuration reload, no downtime or the possibility of a mistake in the configuration file
when editing under stress, just change and click or fire a curl script !

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 15 of 30

In order to use the EBLB-GUI and IWCP you need to copy conf/EBLB/*.lua to your /conf
folder and 4 items in your nginx.conf file.

http {

[1] lua_shared_dict iworkcomproto 1m;

[2] init_worker_by_lua_file conf/iworkcomproto.lua;

 server {

 location = /upstreamcontrol {
 default_type text/html;
[3] content_by_lua_file conf/upstreamcontrol.lua;
 }
 location = /upstreamstatus {
 default_type text/html;
[4] content_by_lua_file conf/upstreamstatus.lua;
 }

1) A shared memory area where IWCP messages are stored
2) This loads IWCP inside every worker
3) This location block pre-processes IWCP commands and EBLB
4) This location block is the GUI of EBLB

See also: conf/EBLB/upstream_candc.conf
Items 1 and 2 are not required when using only 1 worker.

NB. either use allow/deny for management IP addresses or auth_basic in the location
blocks to prevent someone else from changing your upstreams.

Ea.:

http {

 map $remote_addr $lcladdr {
 default 1;
 ~^(10.10.10.*)$ 0;
 ~^(192.168.*.*)$ 0;
 }

 server {

 location / {
 if ($lcladdr) { return 403; }

Or:

 location / {
 auth_basic "Upstreams";
 auth_basic_user_file /nginx/access.txt; # see htpasswd.exe in the download section

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 16 of 30

12. PHP Caching

There are 2 main caching systems we like and are going to mention here, Xcache and
Opcache.

Xcache: see conf/php-xcache-example.ini how to download, add and configure this in your
PHP.INI file.

Xcache is very fast, a fraction faster than Opcache and deals better with frequent changing
files, but it lacks the ability to use shared memory between instances, each PHP-CGI
process will have its own cache which will take a while to be fully filled for optimum
performance.

Xcache is supported for PHP 5.1 and higher.

Opcache: see conf/php-opcache-example.ini how to add and configure this in your
PHP.INI file.

Opcache is part of PHP as of 5.5 and has support for shared memory which greatly
improves all PHP-CGI instances by all using the same cache.

(nb. if xcache would use the same shared memory model we’d be back to xcache in a flash)

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 17 of 30

13. Error logging

Digitalocean has a nice article how error logging works, which we have taken over here.

Error_log Syntax

The "error_log" directive is used to handle logging general error messages. If you are
coming from Apache, this is very similar to Apache's "ErrorLog" directive.

The error_log directive takes the following syntax:

error_log log_file [log_level]

The "log_file" in the example specifies the file where the logs will be written. The
"log_level" specifies the lowest level of logging that you would like to record.

Logging Levels.

The error_log directive can be configured to log more or less information as required. The
level of logging can be any one of the following:

 emerg: Emergency situations where the system is in an unusable state.

 alert: Severe situation where action is needed promptly.

 crit: Important problems that need to be addressed.

 error: An Error has occurred. Something was unsuccessful.

 warn: Something out of the ordinary happened, but not a cause for concern.

 notice: Something normal, but worth noting has happened.

 info: An informational message that might be nice to know.

 debug: Debugging information that can be useful to pinpoint where a problem is
occurring.

The levels higher on the list are considered a higher priority. If you specify a level, the log
will capture that level, and any level higher than the specified level.

For example, if you specify "error", the log will capture messages labeled "error", "crit",
"alert", and "emerg".

** This is a corrected summery from dialogs of the internet such as blogs/forums/wiki **

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 18 of 30

14. Virtual Host Traffic Status, Monitoring for your NOC

A new feature adding monitoring for your NOC (Network Operations Center) enabling you
to monitor your server(s), virtual hosts and upstreams.

Added in 14-3-2015 nginx 1.7.11.2 Gryphon

See /conf/vhts (/VHTS.txt) for instructions.
See also the *.js files for customizing the language, layout and color triggers.

Server zones: this area will fill up when each zone (server) is used (requested). When
nginx has just started this list might be close to empty.

VHTS can also display different languages for an outsourced NOC.
see /conf/vhts/vtsvalues-xy.js (default is English)

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 19 of 30

This feature will fill up your access.log file quickly, you can filter them with the following
(tested) example;

 map $request_uri $loggablevhts {
 default 1;
 /ngxvtstatus 0; # zero=do not log
 /vtsvalues.js 0; # zero=do not log
 /vtsvalues-eop.js 0; # zero=do not log
 /vtsvalues-xy.js 0; # zero=do not log (see language js files)
 /ngxvtstatus/format/json 0; # zero=do not log
 }
 map $remote_addr $lcladdrvhts {
 default 1;
 ~^(127.0.0.*)$ 0; # zero=do not log
 }
 # don't log vhts entries when request is local or from management interface
 map $loggablevhts$lcladdrvhts $loggable {
 default 0;
 ~1 1;
 }

 access_log /path/to/access.log combined if=$loggable;

“A request will not be logged if the (IF) condition evaluates to "0" or an empty string”

Two simple ‘maps’ which are then combined tested in the third ‘map’ which is used in the
IF evaluation of the log directive.

Nb. “[emerg]: could not build the map_hash, you should increase map_hash_bucket_size: 32”
You might need to increase the value of map_hash_bucket_size to;
map_hash_bucket_size 64;

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 20 of 30

15. Upstream timed out (10060…..)

The configuration is like this:

<snip>
location /api {

 proxy_pass http://localhost:3000;
 proxy_set_header X-Real-IP $remote_addr;

}
</snip>

First request goes fine, second request is being loaded after 60 seconds. An error appears on the
error log of upstream error:

2014/01/30 10:32:32 [error] 6760#3604: *1 upstream timed out (10060: A connection attempt failed
because the connected party did not properly respond after a period of time, or established
connection failed because connected host has failed to respond) while connecting to upstream,
client: 127.0.0.1, server: localhost, request: "GET /api/xxxxx HTTP/1.1", upstream: "
http://[::1]:3000/api/xxxxx", host: "localhost"

Solution is to change proxy_pass to;

proxy_pass http://127.0.0.1:3000;

There might also be an issue when using domain names which are external while you
are internal to nginx, ea. All traffic going out through a router and back in again, use a
local DNS (or your ‘host’ file to keep such traffic local)

Also make sure your timeout values are within range,
Ea. client_body_timeout, client_header_timeout, keepalive_timeout, send_timeout,
keepalive_requests

And the values in conf/proxy.conf

Nb. In some cases we have seen that the local dns service on a workstation is not
updating properly, if you see such things happening then disable the DNS Client service.

“Every other 60 second timeouts”
Have a good look at the settings of the network cards, energy saving mode, tcp offloading,
QOS, top/dis-responders, dns settings (like auto register this machine at....), unused
netbios, calls to active directory which may interrupt, bugs with jumboframes, MTU, etc.
Multiple LAN cards and using more than one default gateway (ARP/MAC ‘blocking’).

The only way to really dig into this specific issue is wireshark/tcpdump on both ends to
determine if calls arrive, what happens with them and what happens when they return to
nginx (port closures, handshake error, timeout, protocol errors, etc.)

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 21 of 30

16. Accessing remote resources

Consider the following situation,

Windows: Net use p: //192.168.123.55/data password /user:username

nginx conf: root p:/files

Error Log: *10 CreateFile() "p:/files/index.html" failed (5: Access is denied)

Can be solved with the following scenario;

1. create an user on your remote resource with an username/password that is the
same as nginx is using.

2. then use the resource directly like: root //192.168.123.55/data
3. Done !

A network drive can and does work with nginx but when using a service to run nginx this
network drive (mapped drive) is not visible or accessible inside the service profile.

There are solutions mentioned when you search for them but none really keep on working
or don’t work at all.

Matching username and password between the profile used for nginx and your remote
resource always works and will keep on working.

- What about a shared folder in VirtualBox?
Don’t use this feature for nginx inside a VM, create a real shared resource on the host
instead.

17. PCRE is now JIT enabled

PCRE: Perl Compatible Regular Expressions (As a build in component with nginx).

Added in 3-12-2015 nginx 1.9.8.2 Kitty

Enables the use of “just-in-time compilation” (PCRE JIT) for the regular expressions known
by the time of configuration parsing.

PCRE JIT can speed up processing of regular expressions significantly.

Large performance benefits are possible when (for example) the calling program utilizes
the feature with compatible patterns that are executed repeatedly.

** This is a corrected summery from dialogs of the internet such as blogs/forums/wiki **

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 22 of 30

18. Sticky: Enables session affinity (module)

Enables session affinity, which causes requests from the same client to be passed to the
same server in a group of servers. See also item 25 (restful API).

Added in 22-12-2015 nginx 1.9.10.1 Kitty

For examples see nginx-sticky-module-x.y.pdf in our download area.

Session example: Get a cookie

C:\nginx>curl -i http://127.0.0.1/backend
HTTP/1.1 200 OK
Server: nginx/1.9.8.3 Kitty
Date: Wed, 09 Dec 2015 14:00:41 GMT
Content-Type: text/html
Content-Length: 1347 (content from backend 1, cookie set to hash from this backend)
Connection: keep-alive
Set-Cookie: route=6fd05ef29ac471a01914964d79ae23fa55980dc4; Expires=Wed, 09-Dec-
2015 15:00:41 GMT; Path=/
Vary: Accept-Encoding
Last-Modified: Tue, 05 Jun 2012 20:36:30 GMT
ETag: "0-543-4fce6dce"
Accept-Ranges: bytes

Session example: Use cookie

C:\nginx>curl -v --cookie "route=6fd05ef29ac471a01914964d79ae23fa55980dc4"
http://127.0.0.1/backend
* About to connect() to 127.0.0.1 port 80 (#0)
* Trying 127.0.0.1...
* Connected to 127.0.0.1 (127.0.0.1) port 80 (#0)
> GET /backend HTTP/1.1
> User-Agent: curl/7.29.0
> Host: 127.0.0.1
> Accept: */*
> Cookie: route=6fd05ef29ac471a01914964d79ae23fa55980dc4
>
< HTTP/1.1 200 OK
< Server: nginx/1.9.8.3 Kitty
< Date: Wed, 09 Dec 2015 14:01:00 GMT
< Content-Type: text/html
< Content-Length: 1347 (content from backend 1, cookie set from hash to this backend)
< Connection: keep-alive
< Vary: Accept-Encoding
< Last-Modified: Tue, 05 Jun 2012 20:36:30 GMT
< ETag: "0-543-4fce6dce"
< Accept-Ranges: bytes

http://127.0.0.1/backend
http://127.0.0.1/backend

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 23 of 30

Example nginx configuration:

upstream backendus {
 server 192.168.2.2:80 weight=1 fail_timeout=5;
 server 192.168.2.6:80 weight=1 fail_timeout=5;
 sticky name=route hash=sha1 expires=1h;
}

server {
 listen 80;
 server_name localhost;

 location /backend {
 proxy_ignore_client_abort on;
 proxy_set_header Host $host;
 proxy_pass http://backendus;
 }
}

Example method of combining Sticky and Least_conn loadbalancing:

 # Our sticky pool, once stuck to one member, clients will stay stuck
 upstream backendus {
 server 127.0.0.1:81 weight=1 fail_timeout=5;
 server 127.0.0.1:82 weight=1 fail_timeout=5;
 sticky name=route hash=sha1 expires=1h;
 # pass a stuck session to an internal pool who can deal with sticky sessions
 }
 upstream stickybackendsPA {
 server 192.168.2.10:80 weight=1 fail_timeout=5;
 server 192.168.2.11:80 weight=1 fail_timeout=5;
 least_conn;
 # pool A loadbalanced sticky servers (who can deal with sticky session data)
 }
 upstream stickybackendsPB {
 server 192.168.2.20:80 weight=1 fail_timeout=5;
 server 192.168.2.21:80 weight=1 fail_timeout=5;
 least_conn;
 # pool B loadbalanced sticky servers (who can deal with sticky session data)
 }

 server {
 listen 80;
 server_name localhost;
 location /backend {
 keepalive_requests 500;
 proxy_http_version 1.1;
 proxy_ignore_client_abort on;
 proxy_set_header Host $host;
 proxy_pass http://backendus/; # go to our sticky pool
 }
 }

http://192.168.2.2/
http://192.168.2.6/
http://backend/

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 24 of 30

 server {
 listen 81;
 location / {
 proxy_pass http://stickybackendsPA;
 # from our sticky pool to loadbalanced sticky servers
 }
 }
 server {
 listen 82;
 location / {
 proxy_pass http://stickybackendsPB;
 # from our sticky pool to loadbalanced sticky servers
 }
 }

Which is basically a loop on the nginx machine and yes it doubles the connections
needed, but for nginx the load of 100k users is just as easy as 200k.

Possible solution for gradually server switching:

1. user session normally tracked by cookie, so check the cookie to identify old/new
session

2. route new session to specific server, route old session to its sticked server

Configuration:

 upstream app_pool {
 sticky;
 server a;
 server b;
 }
 upstream upgrade_pool {
 sticky;
 server a;
 server b down;
 }

 server {
 location xxxx {
 set $poolname "app_pool";
 if ($cookie_XXXSESSIONID = "") { set $poolname "upgrade_pool"; }
 proxy_pass http://$poolname;
 }
 }

 This module is available as part of our custom commercial subscription 

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 25 of 30

19. $realip_remote_addr $realip_remote_port

For example:

log_format main '[$time_local] $remote_addr $remote_port - $remote_user $scheme "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for" $upstream_cache_status '

 '$realip_remote_addr $realip_remote_port';

$realip_remote_addr was recently added to the main core, we’ve added
$realip_remote_port

dd. 12-6-2016 this is now part of the nginx core.

20. Rewrite based on user language setting

You may have noticed our website now supports multiple languages, which is also set
automatically when a user has set their preferred language. Here’s how we do that.

http {
……………………

prepare a variable to use in location {}
 map $http_accept_language $sublang {
 default '';
 ~*nl '-nl';
 ~*de '-de';
 }

do it again but create a logical variable for testing
 map $http_accept_language $sublang1 {
 default 0;
 ~*nl 1;
 ~*de 1;
 }

is user coming in at root and have they set a preferred language ?
 map $request_uri $sublang2 {
 default 0;
 / $sublang1;
 }
……………………
 location / {
 if ($sublang2) { rewrite ^(.*)$ /index$sublang.html break; }

finally rewrite to a specific language template html file

21. Video streaming with rtmp and vod

Streaming modules rtmp and vod (MP4 Re-packager) have been ported for non-blocking
use in Windows, both modules have a proven track record, documentation can be found in
our download area.

 These modules are available as part of our basic commercial subscription 

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 26 of 30

22. Closed source versus Open source

From our (old) FAQ:

 Q: Are the sources available?
 A: Short answer: No. Long answer: we have contracted two external auditing companies for
 validation of processes and coding to ensure quality. Due to the merge/build processes it’s
 no longer possible to use a single repository. It would be impossible to maintain our
 environment and a public one, neither do we have time for lengthy coding discussions, after
 more than two years of development we’re fairly sure we know what we’re doing

 A note about subscriptions: There are NO limits imposed on any version, subscription rates
 vary because the support requirements for 10k users per day and 100k are very different,
 large busy sites may require more than one engineer to address problems or to handle support
 requests

So there it is, we’ve said it now which most likely will upset some people but we firmly
believe that time, money and quality for such a complex yet extremely powerful system will
suffer badly if left as open source.
And to be honest we don’t think Nginx Inc. thinks differently with their nginx+ product line.

Of course you can always get the original open source nginx code and compile your own
build, there is no one stopping you from doing this (but also accept the fact that such a
build will have no proper ASLR/DEP support, no multiple worker support, no high
performance support through select-boost, etc.), but if you want more, hassle free high
performance compiled builds, specific (subscription) modules or functionality (ported for
Windows) with professional 24/7 support then you need professional paid support.

In our download area you will always find our latest high performance unlimited
completely free builds !

A note about the relation between modules and subscription versions: a module is part of
the basic, custom or enterprise subscription depends on its complexity and interaction
relations (Linux <-> Windows API) with other components.

23. Stream {} server_name ?

TCP has no concept of server names, so this is not possible. It only works in HTTP
because the client sends the hostname it is trying to access as part of the request,
allowing nginx to match it to a specific server block.

To put in to better wording:

The 'hostname' (server_name) technique has 2 parts,

- part 1 is a receiver (nginx) receiving a request containing a hostname which it can
match (or not) to an item in its configuration, and

- part 2 the DNS where this name is recorded against its IP address.

With stream {} you can only rely on part 2.

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 27 of 30

** This is a corrected summery from dialogs of the internet such as blogs/forums/wiki **

24. Multiple cache files for the same key

Multiple cache files for the same key can be created if a backend response uses the Vary
mechanism to allow multiple resource variants. It is supported by nginx and taken into
account when caching.

If responses are really the same, consider removing Vary from backend responses.
If this is not possible for some reason, you can use proxy_ignore_headers to stop nginx
from handling Vary in responses, e.g.:

proxy_ignore_headers Vary;

Some additional details can be found in the original nginx documentation here:
http://nginx.org/r/proxy_ignore_headers

** This is a corrected summery from dialogs of the internet such as blogs/forums/wiki **

25. Restful interfaces and Headers

This may be obvious to some but not so obvious to others, in a restful API you need to
send back any value the receiver expects or needs to perform functionality based on such
values.

For example with cookies: nginx only sends it once, it is the browser (or Curl or restapi)
responsibility to always send the cookie back (if it’s not expired, if it is expired the receiver
will send a new one back). This is what identifies the 'user' being tied (sticky) to a specific
backend. See also item 18.

26. CIS, DHS, OWASP

In our download area you will find procedures (documents) which describe how to enforce
and perform hardening, change and patch management, guidelines to be and stay attack
resilient on Windows.

Having a NGINX secure environment on Windows on its own is not going to do much good
if the rest does not follow the same security principles and guidelines.

http://nginx.org/r/proxy_ignore_headers

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 28 of 30

27. Sendfile on or off ?

22 March 2016:

Despite the recent changes dealing with sendfile issues we still recommend sendfile to be
off.

28. Dynamic TLS (Optimizing TLS over TCP)

Original blog post https://blog.cloudflare.com/optimizing-tls-over-tcp-to-reduce-latency/
10 Jun 2016 by John Graham-Cumming.

Dynamic TLS has been added in nginx 1.11.2.1 WhiteKnight

ssl_dyn_rec_size_lo: the TLS record size to start with.
Defaults to 1369 bytes (designed to fit the entire record in a single TCP segment: 1369 =
1500 - 40 (IPv6) - 20 (TCP) - 10 (Time) - 61 (Max TLS overhead))

ssl_dyn_rec_size_hi: the TLS record size to grow to.
Defaults to 4229 bytes (designed to fit the entire record in 3 TCP segments)

ssl_dyn_rec_threshold: the number of records to send before changing the record size.

Each connection starts with records of the size ssl_dyn_rec_size_lo. After sending
ssl_dyn_rec_threshold records the record size is increased to ssl_dyn_rec_size_hi.
After sending an additional ssl_dyn_rec_threshold records with size
ssl_dyn_rec_size_hi the record size is increased to ssl_buffer_size.

ssl_dyn_rec_timeout: if the connection idles for longer than this time (in seconds) that
the TLS record size is reduced to ssl_dyn_rec_size_lo and the logic above is repeated. If
this value is set to 0 then dynamic TLS record sizes are disabled and the fixed
ssl_buffer_size will be used instead.

New nginx.conf options (the default values are good enough):
ssl_dyn_rec_enable
ssl_dyn_rec_timeout
ssl_dyn_rec_size_lo
ssl_dyn_rec_size_hi
ssl_dyn_rec_threshold

** This is a corrected summery from dialogs of the internet such as blogs/forums/wiki **

https://blog.cloudflare.com/optimizing-tls-over-tcp-to-reduce-latency/
https://blog.cloudflare.com/author/john-graham-cumming/

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 29 of 30

- Appendixes -

A. F.A.Q.

1. How do the version number and name come together?
 The version number follows nginx release version numbers + a subversion

number specific to our Windows releases + a random theme name based on
Alice in Wonderland.

2. Why did you not compile in all c++ dependencies? (vcredist)?
 These dependencies are not always the same between Windows versions, with

the current native build it will run on any supported Windows OS.

3. Isn't using select slow?
 No, select is not slow, it's only seems cpu hungry but not in way that hinders

high performance usage, Linux really suffers with select but not Windows
despite the Linux slander about this, our select-boost api has solved this issue.

4. Is this a long term project?
 We have 36 months LTS support, how long do you want long term to be ? :)

5. Do you port every change?
 No is the short answer, there is a complex evaluation process which determines

if a change is valid or not, it’s not just nginx code but add-on’s code interactions
which needs to be evaluated.

6. Why can’t I change drives?
 You can but you need to write a path like Linux, D:\Path becomes d:/Path

7. Where is the documentation?
 See our website FrontPage and the /download/documentation-pdf/ folder where

we maintain all documentation files. Take care using any examples which has
references to Linux paths.

8. What determines changes or addons to be added?
 It must be useful, it must be an add-on unless the change is minimal and low

impact on the core, it must compile cleanly under Windows, it can’t have
external dependencies unless it can be linked to a single dll module, it must not
use OS exclusive functionality. Add-ons are not removed once they are in
unless they are bugged beyond repair or when their functionality has been
merged.

9. nginx stop/reload on Windows fails with a ‘Access is denied’
 Run the nginx service as a user (and jail that user), then create a simple cmd

file;
 - runas /savecred /env /user:nginxuser "nginx -s reload"
 - choice /ty,2 /C:ync (or "sleep 2")
 - runas /savecred /env /user:nginxuser "nginx -s reopen"
At the first run you need to enter nginxuser's password, after that '/savecred'
will take care of this.

NGINX for Windows - Documentation

NGINX for Windows - Documentation 1.8 http://nginx-win.ecsds.eu/ Page 30 of 30

10. XP is no longer supported after april 2014, are you going to stop support nginx/xp?
 Are you a lemming? Neither are we, we will keep supporting XP until it’s

technically impossible. NGINX for Windows native build runs on Windows XP
SP3 and higher, both 32 and 64 bit.

11. Sometimes we see a delay with LAN traffic, nginx is not doing anything but the
request is stalling.
 Make sure you have deactivated netbios (smb) from the lan interface(s).

12. Does naxsi work for phpbb?
 Yes it does, but you need to add a few white-list lines:

BasicRule wl:1000 "mz:$URL:/ucp.php|BODY|NAME";
BasicRule wl:1310 "mz:$URL:/ucp.php|BODY|NAME";
BasicRule wl:1311 "mz:$URL:/ucp.php|BODY|NAME";

13. What is nginx_basic?
 Basically a one on one replacement for the windows nginx version which is

made by nginx themselves but with all the benefits and work that has gone into
its big brother, which you find here, without add-ons.

14. WSARecv() failed (10054: An existing connection was forcibly closed by the remote
host) while reading upstream (backend = tomcat, java or similar applications)
 apply these settings to the proxy:

keepalive_requests 500;
proxy_http_version 1.1;
context: http, server, location
Version 1.1 is recommended for use with keepalive connections

15. Windows Server 2012 message that msvcr100.dll is missing?
 In some cases:

manually remove "C:\Windows\System32\msvcr100.dll" and (Re)install the
program vcredist_x64 from here http://nginx-win.ecsds.eu/
In other cases:
Install both the 32-bit C++ Runtime and the 64-bit version as well.

16. Is this version production ready? And who is using it in production?
 Yes it is! And has been for a while, we are using it in a production environment

and we are aware there are quite a few others running our builds.

17. Do I need lua51.dll?
 With nginx.exe you do need it, nginx_basic.exe does not need this library.

18. Can I use other DLL functions with Lua and import them?
 Yes but they need to be compiled against http://luajit.org/download.html (at the

moment v2.0.4), use 'findstr "LuaJIT " lua51.dll' to see which version we have
shipped, functions can be used for example: 'local functionname =
package.loadlib("External.dll", "luaopen_Function");' See also these examples
http://www.scilua.org/ljsqlite3.html
Introducing ngxLuaDB (nginx Lua Database) powered by NGINX for
Windows. See the download section.

	1. Preface: [nginx for Windows roadmap]
	2. Additional custom 503 error handler via 513
	3. Micro caching
	4. Apache migration tips
	5. Speed up image access with a Vary header
	6. Deny access to folder(s) (.htaccess conversion)
	7. SSL best practices (dd. 7-3-2015)
	8. Apache style logging
	9. Redirect all except root (for http to https redirection)
	10. Authentication via other methods
	11. Elastic Backend Load Balancer & IWCP
	12. PHP Caching
	13. Error logging
	14. Virtual Host Traffic Status, Monitoring for your NOC
	15. Upstream timed out (10060…..)
	16. Accessing remote resources
	17. PCRE is now JIT enabled
	18. Sticky: Enables session affinity (module)
	19. $realip_remote_addr $realip_remote_port
	20. Rewrite based on user language setting
	21. Video streaming with rtmp and vod
	22. Closed source versus Open source
	23. Stream {} server_name ?
	24. Multiple cache files for the same key
	25. Restful interfaces and Headers
	26. CIS, DHS, OWASP
	27. Sendfile on or off ?
	28. Dynamic TLS (Optimizing TLS over TCP)
	- Appendixes -
	A. F.A.Q.

